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Abstract 

 

An accurate solution of the nonlinear partial differential equation has been the focus of studies for many years. This solution is 

helpful for understanding complex physics phenomena and dynamic processes. An auxiliary equation represented by theta functions 

is constructed by using the auxiliary equation method, which is applied to the modified equal width function. Double periodical wave 

solutions are numerically simulated using the accurate solution obtained by the symbolic computation software Mathematica. Results 

revealed that the auxiliary equation method is an effective and powerful mathematic tool for solving nonlinear evolution equations in 

mathematical physics using Mathematical. 
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1 Introduction 

 
The modified equal width (MEW) equation derived from 

nonlinear media through a dispersion process has been 

the focus of studies in the past decades [1–3]. Several 

methods have been presented to study the different 

solutions and physical phenomena related to this equation 

because of its wide applications and important 

mathematical properties. S. I. Zaki provided the solitary 

wave interactions of the MEW equation by using the 

Petrov–Galerkin method together with quintic B-spline 

finite elements. A. M. Wazwaz considered different 

solutions using the tanh and the sine–cosine methods, 

respectively. In addition, B. Saka provided numerical 

solutions by using collocation method. The MEW 

equation is presented as follows: 

 

2
0t x xxtu u u u   .                                               (1) 

 

Searching and constructing exact solutions for 

nonlinear partial differential equations (NLPDEs) is an 

ongoing research topic. These exact solutions can help in 

understanding the mechanism of complex physics 

phenomena and dynamic processes modelled by these 

NLPDEs. Several studies on exact solutions to NLPDEs 

exist, such as the famous inverse scattering method, the 

Back Lund transformation, the Darboux transformation, 

the HI rota bilinear method, and the Pain eve method [4–

9]. Direct search for exact solutions to NLPDEs has 

become increasingly attractive in recent years partly 

because of the availability of symbolic computation 

systems such as Maple or Mathematica. These systems 

enable us to perform complicated and tedious algebraic 

calculations on a computer and help us find exact MEW 

solutions to NLPDE, such as the homogeneous balance 

method [10], the tanh function method [11], the sine–

cosine method [12], the Jacobi elliptic functions method 

[13], the F-expansion method [14], and so on [15–19]. In 

this study, we apply the auxiliary equation method [20] to 

seek exact solutions to the MEW equation (Eq. 1) by 

taking full advantage of the elliptical equation 

 

      
2 4 2

4 2 0
F x b F x b F x b    .                 (2) 

 

and obtain traveling wave solutions in terms of theta 

functions with the aid of symbolic computation for the 

first time. 

This paper is organized as follows: In the second 

section, we illustrate the auxiliary equation method and 

the properties of theta functions. In the third section, we 

apply the auxiliary equation method and an MEW 

solution of elliptical Eq. (2) to seek exact solutions of the 

MEW equation. The last section presents the conclusions. 

 

2 Auxiliary equation method 

 

We describe the auxiliary equation method as follows: 

Consider a given NLPDE with independent variables, 

 

 1 2
; ; ; ;

l
x x x x t

 
 

and dependent variable u: 

 
1

; ; ; ; 0 .
t x tt

P u u u u                                         (3) 
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Generally speaking, the left-hand side of Eq. (3) is a 

polynomial in u  and its various partial derivatives. We 

seek its traveling wave solution in the formal solution 

   
0

1

N

n

i

i

u a a F 


                                (4) 

by taking 

   
1 2
; ; ; ; ,

l
u x x x t u 

1 1 2 2 l l
k x k x k x t      ,                                  (5) 

where  

1 2
, , ,

l
k k k 

  
and  

( 1, 2, )
i

a i N
  

are constants to be determined, and  

 F 
  

satisfies elliptical Eq. (2).  

Inserting (4) into (3) yields an ODE for  

  :u 
 

 ; ; ; 0P u u u   ,                                            (6) 

where integer N can be determined.  

The following fact is needed to achieve the aim of this 

study for elliptical Eq. (2). 

Proposition: If we take  
2 2

2 44 0
(0) (0)b b     

  
and  

2 2

2 42
(0) (0),b   

  
then  

 
1 3
( ) / ( )F z z z 

  
satisfies elliptical Eq. (3), where theta functions are 

defined as follows: 

 

2
[ ]( ) exp{ ( ) 2( )( )}

2 2 2n

z i n n z
   

   






 
     

 


 
( ) ( ) [ ]( ),

i i i
z z z     

   (7) 

1 2 3 4

1 1 0 0
, , ,

1 0 0 1
      

       

       
         

, 

where i=1,2,3,4.     

The steps to determine ( )u   are as follows: 

Step 1: N is determined by considering the homogeneous 

balance between the governing nonlinear term(s) and the 

highest-order derivatives of ( )u   in Eq. (6). 

Step 2: Eq. (4) is substituted into Eq. (6), and Eq. (2) is 

used to convert the left-hand side of Eq. (6) into a finite 

series in: 

   0,1, ,
k

MkF  
. 

Step 3: Equating each coefficient of ( )
k

F   to zero 

produces a system of algebraic equations for 

 0,1, ,
i

i Na 
. 

Step 4: With the aid of Mathematica or Maple in solving 

the system of algebraic equations, , ,
i i

a k    

can be expressed by A, B, C (or the coefficients of ODE 

[Eq. 6]). 

Step 5: Substituting these results into Eq. (5), we can 

obtain the general form of traveling wave solutions to Eq. 

(3). 

Step 6: We can provide a series of theta function 

solutions to Eq. (3) from the proposition. 

 

3 Exact Solutions to the MEW equation 

 

In this section, we will use the auxiliary equation 

method and symbolic computation to find the exact 

solutions to the MEW equation. 
We assume that Eq. (2) has a traveling wave solution 

in the form: 

   , ,u x t U   x t      .                               (8) 

Substituting Eq. (8) into Eq. (2), Eq. (2) is transformed 

into the following form: 

2 2
0u u u u       

 
.                                 (9) 

According to Step 1 in the second section, we obtain 

1n   by balancing u   and u u   in Eq. (9). Suppose that 

Eq. (9) has the following solutions: 

0 1
( ) ( ),U a a F  

       
              (10)                           

 

( ) ( )
1

U a F  

 

, 
1

( ) ( )U a F  

 

,             (11)                      

Substituting Eqs. (10) And (11) along with Eq. (3) into 

Eq. (9) produces a polynomial equation in ( )F  . Setting 

their coefficients to zero obtains a set of algebraic 

equations with unknown parameters
0 1
, ,a a  : 

2 2
1 0 0 1 0 1 0 2

3 2 2 2
1 0 1 2 0 1 2 1 2

2
1 0 4

3 2 2
1 2 1 4 0 1 4 1 2 4

2
0 1 0

2
0 1 2

2
1 2 2 1 4 1 0 4 1 2 4

3 2 2
1 4 1 4

0

6 0
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0

0
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a b a a b a b b

a b a b a a b a b

a b b

a b a b a a b a b b
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a a b a b a a b a b b

a b a b

   
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 

    





    

  

  

  

 

   





   

   
By solving these equations with the use of the symbolic 

computation software Mathematica, we can obtain the 

following solutions: 

4

1 0
4

2 2

6 1
, 0, ,

b
a a

b b


  

 

(12) 

4

1 0
4

2 2

6 1
, 0, ,

i b
a a

b b


    

 

                  

(13) 

 

4

1 0
4

2 2

6 1
, 0, ,

i b
a a

b b


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(14) 
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4

1 0
4

2 2

6 1
, 0, ,

b
a a

b b


   

 

 

(15) 

and substituting Eqs. (11)–(15) into Eq. (10), we obtain 

the traveling wave solutions of the MEW equation 

4

4
2

2

1

6
( , ) ( )

b
u x t F

b


 , 

where x t    , 
0 2 4
, , ,b b b   are arbitrary constants, 

and   is given in Eq. (12);  

4

4
2

2

6
( , ) ( )

i b
u x t F

b


  , 

where x t    , 
0 2 4
, , ,b b b   are arbitrary 

constants, and   is given in Eq. (13); 

4

4
2

3

6
( , ) ( )

i b
u x t F

b


 , 

where x t    , 
0 2 4
, , ,b b b   are arbitrary constants, 

and   is given in Eq. (14); 

4

4
2

4

6
( , ) ( )

b
u x t F

b


  , 

where x t    , 
0 2 4
, , ,b b b   are arbitrary 

constants, and   is given in Eq. (15). 

If we choose 2 2

2 44 0
(0) (0)b b       and 

2 2

2 42
(0) (0)b     from the proposition, we can obtain 

solutions to the MEW equation in terms of theta functions 

1

3

4

4
2

1

( )

( )

6
( , )

b
u x t

b

 

 


 , 

where x t    , 
0 2 4
, , ,b b b   are arbitrary 

constants, and   is given in Eq. (12); 

1

3

4

4
2

2

( )

( )

6
( , )

i b
u x t

b

 

 


  , 

where x t    , 
0 2 4
, , ,b b b   are arbitrary constants, 

and   is given in Eq. (13); 

1

3

4

4
2

3

( )

( )

6
( , )

i b
u x t

b

 

 


 , 

where x t    , 
0 2 4
, , ,b b b   are arbitrary 

constants, and   is given in Eq. (14); 

1

3

4

4
2

4

( )

( )

6
( , )

b
u x t

b

 

 


  , 

where x t    , 
0 2 4
, , ,b b b   are arbitrary 

constants, and   is given in Eq. (15). 

We depict the Figure 1 of the solution   by using 

Mathematica to grasp the characteristics of Eq. (2) 

solutions.

 
 

(a) Perspective view of the wave
1
( , )u x t . (b) Overhead view of the wave

1
( , )u x t . 

  
(c) Propagation of the wave along the x -axis. (d) Propagation of the wave along the t -axis. 

FIGURE 1 The solution  
1
( , )u x t : 1(a)–1(d) 
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Figures 1(a)–1(d) show the properties and profiles of 

Mathematica under the following parameters: 

0 .1, 0 .5    , and 2t   for 2D Figure 1(c), and 

2x   for 2D Figure 1(d). Figures 1(a)–1(d) show that 

the solution 
1
( , )u x t  is a doubly periodic wave solution.  

 

4 Conclusions 

 

In this study, we examined the MEW equation. Some 

traveling wave solutions in terms of theta functions are 

successfully obtained by using the auxiliary equation 

method with the aid of symbolic computation for the first 

time. These solutions should be significant in explaining 

some physics phenomena. The auxiliary equation method 

is a very effective and powerful mathematical tool for 

solving nonlinear evolution equations in mathematics and 

physics. Moreover, it can be conveniently operated with 

the aid of symbolic computation systems such as 

Mathematica or Maple. 
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